Photostabilization of Polymers

Author: J.F. Rabek

Publisher: Springer Science & Business Media


Category: Science

Page: 596

View: 541

During the last two decades, the production of polymers and plastics has been increasing rapidly. In spite of developing new polymers and polymeric materials, only 40-60 are used commercially on a large scale. It has been estimated that half of the annual production of polymers is employed outdoors. Increasing the stability of polymers and plastics towards heat, light, atmospheric oxygen and other environmental agents and weathering conditions has always been a very important problem. The photochemical instability of most of polymers limits them to outdoor application, where they are photo degraded fast over periods ranging from months to a few years. To the despair of technologists and consumers alike, photodegrada tion and environmental ageing of polymers occur much faster than can be expected from knowledge collected in laboratories. In many cases, improved methods of preparation and purification of both monomers and polymers yield products of better quality and higher resistance to heat and light. However, without stabilization of polymers by applica tion of antioxidants (to decrease thermal oxidative degradation) and photostabilizers (to decrease photo-oxidative degradation) it would be impossible to employ polymers and plastics in everyday use.
Technology & Engineering

Polymer Engineering

Author: Bartosz Tylkowski

Publisher: Walter de Gruyter GmbH & Co KG


Category: Technology & Engineering

Page: 490

View: 657

Polymer Engineering focuses on the preparation and application of polymers in several hot topics such as artificial photosynthesis, water purification by membrane technologies, and biodiesel production from wastewater plants. The authors not only describe the latest developments in polymer science, but also support these experimental results by computational chemistry and modelling studies.
Technology & Engineering

Photochemistry and Photophysics of Polymeric Materials

Author: Norman S. Allen

Publisher: John Wiley & Sons


Category: Technology & Engineering

Page: 712

View: 161

Presents the state of the technology, from fundamentals to new materials and applications Today's electronic devices, computers, solar cells, printing, imaging, copying, and recording technology, to name a few, all owe a debt to our growing understanding of the photophysics and photochemistry of polymeric materials. This book draws together, analyzes, and presents our current understanding of polymer photochemistry and photophysics. In addition to exploring materials, mechanisms, processes, and properties, the handbook also highlights the latest applications in the field and points to new developments on the horizon. Photochemistry and Photophysics of Polymer Materials is divided into seventeen chapters, including: Optical and luminescent properties and applications of metal complex-based polymers Photoinitiators for free radical polymerization reactions Photovoltaic polymer materials Photoimaging and lithographic processes in polymers Photostabilization of polymer materials Photodegradation processes in polymeric materials Each chapter, written by one or more leading experts and pioneers in the field, incorporates all the latest findings and developments as well as the authors' own personal insights and perspectives. References guide readers to the literature for further investigation of individual topics. Together, the contributions represent a series of major developments in the polymer world in which light and its energy have been put to valuable use. Not only does this reference capture our current state of knowledge, but it also provides the foundation for new research and the development of new materials and new applications.


Author: D. Bryce-Smith

Publisher: Royal Society of Chemistry


Category: Reference

Page: 653

View: 985

Compiled by teams of leading authorities this Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes.
Technology & Engineering

Biodegradable polymers for industrial applications

Author: Ray Smith

Publisher: CRC Press


Category: Technology & Engineering

Page: 532

View: 711

The vast majority of plastic products are made from petroleum-based synthetic polymers that do not degrade in a landfill or in a compost-like environment. Therefore, the disposal of these products poses a serious environmental problem. An environmentally-conscious alternative is to design/synthesize polymers that are biodegradable. Biodegradable polymers for industrial applications introduces the subject in part one by outlining the classification and development of biodegradable polymers with individual chapters on polyhydroxyalkanoates, polyesteramides and thermoplastic starch biodegradable polymers and others. The second part explores the materials available for the production of biodegradable polymers. Polymers derived from sugars, natural fibres, renewable forest resources, poly(lactic acid) and protein-nanoparticle composites will be looked at in detail in this section. Part three looks at the properties and mechanisms of degradation, prefacing the subject with a chapter on current standards. The final part explores opportunities for industrial applications, with chapters on packing, agriculture and biodegradable polycaprolactone foams in supercritical carbon dioxide. Biodegradable polymers for industrial applications explores the fundamental concepts concerning the development of biodegradable polymers, degradable polymers from sustainable sources, degradation and properties and industrial applications. It is an authoritative book that will be invaluable for academics, researchers and policy makers in the industry.