Technology & Engineering

Mechanisms of Polymer Degradation and Stabilisation

Author: G. Scott

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 329

View: 405

The purpose of this publication is two-fold. In the first place it is intended to review progress in the development of practical stabilising systems for a wide range of polymers and applications. A complemen tary and ultimately more important objective is to accommodate these practical developments within the framework of antioxidant theory, since there can be little question that further major advances in the practice of stabilisation technology will only be possible on a firm mechanistic foundation. With the continual increase in the number of commercial anti oxidants and stabilisers, often functioning by mechanisms not even considered ten years ago, there is a need for a general theory which will allow the potential user to predict the performance of a particular antioxidant structure under specific practical conditions. Any such predictive tool must involve a simplified kinetic approach to inhibited oxidation and, in Chapter 1, Denisov outlines a possible mechanistic approach with the potential to predict the most useful antioxidant to use and the limits of its usefulness. In Chapter 2, Schwetlick reviews the current state of knowledge on the antioxidant mechanisms of the phosphite esters with particular emphasis on their catalytic peroxidolytic activity. Dithiophosphate v vi PREFACE derivatives show a similar behaviour but for quite different reasons and, in Chapter 3, AI-Malaika reviews information available from analytical studies, particularly using 31p_NMR spectroscopy, to elucid ate the complex chemistry that leads to the formation of the antioxidant -active agents.
Technology & Engineering

Polymer Degradation and Stabilization

Author: W. L. Hawkins

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 122

View: 949

The development of polymers as an important class of material was inhibited at the first by the premature failure of these versatile compounds in many applications. The deterioration of important properties of both natural and synthetic polymers is the result of irreversible changes in composition and structure of polymers molecules. As a result of these reactions, mechanical, electrical and/or aesthetic properties are degraded beyond acceptable limits. It is now generally recognized that stabilization against degradation is necessary if the useful life of polymers is to be extended sufficiently to meet design requirements for long-term applications. Polymers degrade by a wide variety of mechanisms, several of which affect all polymers through to varying degree. This monograph will concentrate on those degradation mechanisms which result from reactions of polymers with oxygen in its various forms and which are accelerated by heat and/or radiation. Those stabilization mechanisms are discussed which are based on an understanding of degradation reaction mechanisms that are reasonably well established. The stabilization of polymers is still undergoing a transition from an art to a science as mechanisms of degradation become more fully developed. A scientific approach to stabilization can only be approached when there is an understanding of the reactions that lead to degradation. Stabilization against biodegradation and burning will not be discussed since there is not a clear understanding of how polymers degrade under these conditions.
Science

Polymer Degradation and Stabilisation

Author: Norman Grassie

Publisher: CUP Archive

ISBN:

Category: Science

Page: 232

View: 269

The study of polymer degradation and stabilisation is of considerable practical importance as the industrial uses of polymeric materials continue to expand. In this book, the authors lucidly relate technological phenomena to the chemistry and physics of degradation and stabilisation processes. Degradation embraces a variety of technologically important phenomena ranging from relatively low temperature processes such as 'weathering' of plastics, 'fatigue' of rubbers through the processing of polymers in shearing mixers to very high temperature processes such as flammability and ablation. All these technological phenomena have in common certain basic chemical reactions. Thus 'weathering' has its roots in photo-oxidation, 'fatigue' and melt-degradation in mechano-oxidation and flammability, and ablation in ablation in pyrolysis and vapour phase oxidation.
Technology & Engineering

Fundamentals of Polymer Degradation and Stabilization

Author: N.S. Allen

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 201

View: 532

During the past decade, the field of polymer degradation and stabilization has become a subject of central importance in polymer science and technology. This book provides a fundamental source of information designed for those with only a basic understanding of the background of the field.