Technology & Engineering

High-Temperature Superconductors: Materials, Properties, and Applications

Author: Rainer Wesche

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 437

View: 226

The discovery by J. G. Bednorz and K. A. Mtllier in 1986 that the superconducting state can exist in oxides at temperatures above 30 K stimulated research in the field of superconductivity and opened up a new field of research. Within a few years a large number of cuprate superconductors with transition temperatures well above the boiling point of liquid nitrogen have been found. The possibility of using liquid nitrogen as coolant re-stimulated interest in power applications of supercon ductivity. In this book an overview of the known high-Te superconductors and their physical properties is presented. Aspects related to conductor fabrication and high-current applications are emphasised. The material should be suitable for use in graduate level courses on superconductivity. Researchers in the field may profit from the large number of tables and references describing its status at the end of 1997. An introduction to high-To superconductivity must be based on the fundamental physical principles of normal-state electrical conductivity and the well-known characteristics of conventional superconductors. In Chapter 2 this background is provided. Crystal structures, anisotropic properties and general trends of the critical temperatures of the cuprate superconductors are described in Chapters 3 and 4. The processing of superconductor powders addressed in Chapter 5 affects considerably the current-carrying capacity of high-T. wires. In Chapter 6 several fabrication techniques for superconducting wires are described. In addition, the factors limiting the transport critical currents ofhigh-Te wires are discussed.
Technology & Engineering

Physical Properties of High-Temperature Superconductors

Author: Rainer Wesche

Publisher: John Wiley & Sons

ISBN:

Category: Technology & Engineering

Page: 544

View: 602

A much-needed update on complex high-temperaturesuperconductors, focusing on materials aspects; this timely bookcoincides with a recent major break-through of the discovery ofiron-based superconductors. It provides an overview of materials aspects of high-temperaturesuperconductors, combining introductory aspects, description of newphysics, material aspects, and a description of the materialproperties This title is suitable for researchers inmaterials science, physics and engineering. Also for techniciansinterested in the applications of superconductors, e.g. asbiomagnets
Technology & Engineering

Microstructure and Properties of High-Temperature Superconductors

Author: I. A. Parinov

Publisher: Springer Science & Business Media

ISBN:

Category: Technology & Engineering

Page: 586

View: 298

This book provides a comprehensive presentation of all types of HTSC and includes a broad overview on HTSC computer simulations and modeling. Especial attention is devoted to the Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O families that today are the most perspective for applications. The book includes a great number of illustrations and references. The monograph is addressed to students, post-graduate students and specialists, taking part in the development, preparation and researching of new materials.
Technology & Engineering

Study of Second Generation High Temperature Superconductors: Electromagnetic Characteristics and AC Loss Analysis

Author: Boyang Shen

Publisher: Springer Nature

ISBN:

Category: Technology & Engineering

Page: 185

View: 310

This thesis introduces a systematic study on Second Generation (2G) High Temperature Superconductors (HTS), covering a novel design of an advanced medical imaging device using HTS, and an in-depth investigation on the losses of HTS. The text covers the design and simulation of a superconducting Lorentz Force Electrical Impedance Tomography. This is potentially a significant medical device that is more efficient and compact than an MRI, and is capable of detecting early cancer, as well as other pathologies such stroke and internal haemorrhages. It also presents the information regarding the fundamental physics of superconductivity, concentrating on the AC losses in superconducting coils and tapes. Overall, the thesis signifies an important contribution to the investigation of High Temperature Superconductors. This thesis will be beneficial to the development of advanced superconducting applications in healthcare as well as more broadly in electrical and energy systems.
Technology & Engineering

High-Temperature Superconducting Materials Science and Engineering

Author: Donglu Shi

Publisher: Elsevier

ISBN:

Category: Technology & Engineering

Page: 480

View: 858

This book explores the fascinating field of high-temperature superconductivity. Basic concepts–including experimental techniques and theoretical issues–are discussed in a clear, systematic manner. In addition, the most recent research results in the measurements, materials synthesis and processing, and characterization of physical properties of high-temperature superconductors are presented. Researchers and students alike can use this book as a comprehensive introduction not only to superconductivity but also to materials-related research in electromagnetic ceramics. Special features of the book: presents recent developments in vortex-state properties, defects characterization, and phase equilibrium introduces basic concepts for experimental techniques at low temperatures and high magnetic fields provides a valuable reference for materials-related research discusses potential industrial applications of high-temperature superconductivity includes novel processing technologies for thin film and bulk materials suggests areas of research and specific problems whose solution can make high-Tc superconductors a practical reality
Technology & Engineering

Advances in High Temperature Superconductors and their applications

Author: S. MOHAN

Publisher: MJP Publisher

ISBN:

Category: Technology & Engineering

Page: 232

View: 254

Prof. Heike Kamerlingh Onnes discovered superconductivity while measuring resistivity of mercury. Surprisingly the resistivity of mercury ceased at 4.2 K and this phenomenon was known as superconductivity. He realized the importance of this discovery in producing large magnetic fieldspl. delateIt was realized that superconductivity is in a new thermodynamic state with peculiar electric and magnetic properties. This paved the way to discover more superconductors. Simple elements such as Tin, Indium or lead showed the highest critical temperature (Tc) 7.2 K. They were called as Type 1 superconductors. Niobium-nitride was found to superconduct at 16 K at 1941 and Vanadium-silicon showed superconductive properties at 17.5 K at 1953. Nb alloys and binary or more complex compounds such as Nb3Sn (Tc – 18 K), Nb-Ti (Tc -9 K), Ga, V with Tc,23 K became type II superconductors. Thereafter, there was not much improvement in the development of superconductor although wonderful applications were expected from superconductors. After three decades, Fullerenes, like ceramic superconductors, are discovered. A decade ago MgB2 was discovered with Tc = 39 K. These superconductors were routinely produced into formof wires for producing larger magnetic fields. In all these cases cooling was effectively done by liquid Helium. A comprehensive microscopic theory of superconductivity in metals was proposed in 1957 by John Bardeen, Leon Cooper and Robert Schrieffer (the so-called “BCS” theory) for which they received the Nobel Prize in Physics. In a major breakthrough, George Bednorz and Karl Mueller discovered a brittle ceramic superconductivity in the family of cuprates at 30 K in 1986 and a new era began. Inspired by the work of Bednorz and Mueller on high temperature superconductivity (HTS), Paul Chu and his associates at the University of Houston discovered in 1987, 123 compounds. That is, YBCO (Yttrium1- Barium2-Copper3- Oxygen7) and iso-structural RBCO (Rare-earth1-Barium2-Copper3-Oxygen7) have a Tc of 93 K. Prior to 1987, all superconducting materials had lower critical temperatures (Tc’s) and therefore functioned only at temperatures near the boiling point of liquid helium (4.2 K) or liquid hydrogen (20.28 K), with the highest being Nb3Ge at 23 K. They were known as low temperature superconductors. YBCO was the first material to become superconducting above 77 K, (boiling point of liquid nitrogen) and subsequently a series of high temperature superconducting materials were discovered. These superconducting materials are widely known as High temperature superconductors as these Tc’s exceeded the limit prescribed by BCS theory. HTSCs are potentially valuable as liquid nitrogen is cheaper than liquid helium. YBCO possesses superior superconducting and physical properties. YBCO receiver coils in NMR-spectrometers have improved the resolution NMR spectrometers by a factor of 3 compared to that achievable with conventional coils. Paul Chu’s group holds the current Tc-record of 164 K in the mercury barium based cuprate superconductor under pressure. Their work led to a rapid succession of new high temperature superconducting materials, ushering in a new era in material science, chemistry and technology. Added to this the structure of Bi2Sr2Ca2Cu2O10(BiSCCO) high temperature superconductive compound having T= 110 K was reported. In 1993, mercuric-cuprates, perovskite ceramic superconductors with the transition temperatures Tc =138 K was also reported.
Science

High Temperature Superconductivity 1

Author: A. V. Narlikar

Publisher: Springer Science & Business Media

ISBN:

Category: Science

Page: 503

View: 964

In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.
Technology & Engineering

High Temperature Superconductor Bulk Materials

Author: Gernot Krabbes

Publisher: John Wiley & Sons

ISBN:

Category: Technology & Engineering

Page: 311

View: 494

With its comprehensive review of the current knowledge and the future requirements in the field, this book presents all the features of bulk high temperature superconducting materials. Starting from physical and chemical fundamentals, the authors move on to portray methods and problems of materials processing, thoroughly working out the characteristic properties of bulk superconductors in contrast to long conductors and films. They provide a wide range of specific materials characteristics with respect to the latest developments and future applications guiding from fundamentals to practical engineering examples. The authors are all leading international specialists involved in the field of high TC superconductor bulk materials since the beginning. Of utmost interest to engineers, scientists, and PhD students working in this field.
Technology & Engineering

Materials Handbook

Author: François Cardarelli

Publisher: Springer

ISBN:

Category: Technology & Engineering

Page: 2254

View: 792

The unique and practical Materials Handbook (third edition) provides quick and easy access to the physical and chemical properties of very many classes of materials. Its coverage has been expanded to include whole new families of materials such as minor metals, ferroalloys, nuclear materials, food, natural oils, fats, resins, and waxes. Many of the existing families—notably the metals, gases, liquids, minerals, rocks, soils, polymers, and fuels—are broadened and refined with new material and up-to-date information. Several of the larger tables of data are expanded and new ones added. Particular emphasis is placed on the properties of common industrial materials in each class. After a chapter introducing some general properties of materials, each of twenty-four classes of materials receives attention in its own chapter. The health and safety issues connected with the use and handling of industrial materials are included. Detailed appendices provide additional information on subjects as diverse as crystallography, spectroscopy, thermochemical data, analytical chemistry, corrosion resistance, and economic data for industrial and hazardous materials. Specific further reading sections and a general bibliography round out this comprehensive guide. The index and tabular format of the book makes light work of extracting what the reader needs to know from the wealth of factual information within these covers. Dr. François Cardarelli has spent many years compiling and editing materials data. His professional expertise and experience combine to make this handbook an indispensable reference tool for scientists and engineers working in numerous fields ranging from chemical to nuclear engineering. Particular emphasis is placed on the properties of common industrial materials in each class. After a chapter introducing some general properties of materials, materials are classified as follows. ferrous metals and their alloys; ferroalloys; common nonferrous metals; less common metals; minor metals; semiconductors and superconductors; magnetic materials; insulators and dielectrics; miscellaneous electrical materials; ceramics, refractories and glasses; polymers and elastomers; minerals, ores and gemstones; rocks and meteorites; soils and fertilizers; construction materials; timbers and woods; fuels, propellants and explosives; composite materials; gases; liquids; food, oils, resin and waxes; nuclear materials. food materials